

Arraystar eccDNA-seq

Profiling the extrachromosomal circular DNAs in cancer and diseases

Highlights

- Broad coverage: Simultaneous profiling of eccDNA(<10 kb) and ecDNA(>=10 kb).
- Maximal eccDNA enrichment: Chromosomal and mitochondrial DNA removal with Rolling Circle Amplification of eccDNA to dramatically increase eccDNA reads.
- High reliability: Well established and optimized procedures to produce best possible results.
- Easy-to-use analyses: Provided with rich annotation, genome browser track visualization, publication-ready graphics for biologists and clinicians.

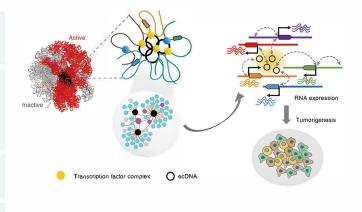
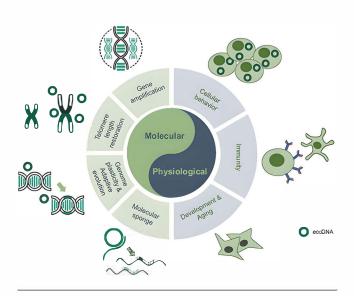



Fig 1. ecDNA acts as a mobile super-enhancer to regulate gene transcription [2].

Introduction

Extrachromosomal circular DNA (eccDNA) is a class of doublestranded circular DNA molecules present outside of regular chromosomal DNA. eccDNA is widely found in human normal and cancer tissues, body fluids, and other eukaryotic cells. According to the lengths, eccDNA can be classified into two main categories : eccDNA (<10 kb) and ecDNA (>=10 kb)[1]. eccDNAs may arise from any regions of the genome in normal tissues or as a byproduct of programmed cell death. These entities are typically devoid of genes and are not subjected to either amplification or growth selection within the cells. The term extrachromosomal DNA (ecDNA) is more commonly used to refer specifically to the very large eccDNAs, i.e. large clonal circular DNA molecules (10 kb to several Mb) that are clonally inherited, self-replicating, amplifying and selected only in cancer cells. These ecDNA molecules frequently harbor oncogenes, drug resistance genes, or mobile superenhancers, which provide an evolutionary selective advantage for cancers [2](Fig. 1). Functionally, eccDNAs and ecDNAs regulate diverse molecular and physiological processes and are closely associated with a variety of diseases [3](Fig. 2). Due to the circular form, eccDNA can be excellent diagnostic and prognostic markers (Table 1). In recent years, eccDNAs have become one of the major breakthroughs and research hotspots in cancer research.

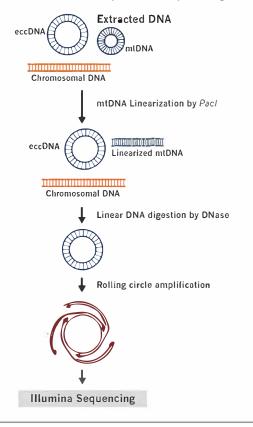
Fig 2. eccDNAs regulate diverse molecular and physiological processes in, e.g., gene amplification, telomere length restoration, genomic plasticity and molecular sponges, cellular behavior, immunity and aging [3].

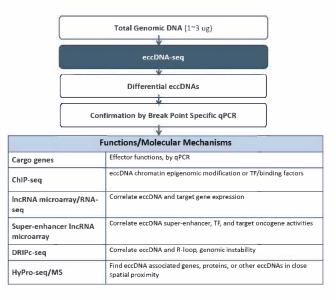
Table 1. eccDNA as biomarker

Molecule	Form	RNa s e resistance	Stability	Length	Pre-Amp
cfDNA	Linear	Weak	Unstable	Short	PCR
eccDNA	Circular	Strong	Stable	Long	RCA

eccDNA Profiling

In eccDNA sequencing, the overwhelming amounts of linear chromosomal DNA and circular mitochondrial DNA (mtDNA) in the DNA sample must be removed as they can significantly reduce the eccDNA reads. Arraystar eccDNA-seq linearizes the circular mtDNAs by restriction endonuclease cleavage and then digests the linearized mtDNA and linear chromosomal DNA by a linear DNA-specific exonuclease, leaving eccDNAs intact and enriched in the sample. The eccDNAs are amplified by Rolling Circle Amplification (RCA), greatly improving the eccDNA signals and data quality (Fig. 3). The eccDNA-seq data are well annotated and analyzed for ready use (Fig. 4).




Fig 3. eccDNA-seq workflow

Туре	Length Soft clippedreads		is Disco	rdant pairs	Circle score	Chrom	Start	End	
ecDNA	CDNA 97,562,003 74		54		2733	Chr2	68799831	166361834	
ecDNA	50,181,	084 245		180		8117.43	ChrX	29724616	79905700
ecDNA 45,636,984		984	155		78		Chr2	68533526	114170510
ecDNA 28,348,253		253	410		608		ChrX	79870366	108218619
eccDNA	9,863		413		396	15689	Chr6	106157513	106167376
eccDNA	9,636		48		174	851.06	Chr4	169181379	169191015
eccDNA	9,403		179		124		Chr13	86180618	86190021
Туре	ype Gene ID		Gene	Gene symbol	CancerDriverGene 0B		Gene biotype	Gene biotype Gene locus	
ecDNA	ENSG00000580	85 58889	100%	LAMC2	TAG		Protein_coding	chr1:183155373-183214262:+	
ecDNA	DNA ENSG00000163041		100%	H3-3A	NCGv7;AC		Protein_coding	chr1:226249552-226259720:+	
ecDNA	ENSG000001587	15 22658	100%	SLC45A3	IntOGen-DriverGenes;AC		Protein_coding	Protein_coding chr1:205626979 20564	
ecDNA	ENSG000001431	84 5464	100%	XCL1	DriverD8v3;AC		Protein_coding	chr1:168545843-168551307:+	

Fig 4. eccDNA-seq annotation and analysis.

eccDNA Research Roadmap

With the eccDNA-seq data, the differentially expressed eccDNAs are often confirmed by qPCR based on their characteristic break point (i.e. circular junction) sites. eccDNA functions can be predicted by their cargo genes. ChIP-seq can be used to study eccDNA chromatin modifications, epigenomic states, or transcription factor binding. The eccDNAs and their target gene expression can be correlated by IncRNA&mRNA microarray or RNA-seq. eccDNA super-enhancer activities along with all transcription factors and oncogenes can be studied by using Super-enhancer Microarrays. R-loops are involved in eccDNA formation and genomic instability, which can be profiled by DRIPc-seq. To study eccDNA interacting chromosomal DNA, proteins and other eccDNAs, HyPro enzyme can label eccDNA binding partners in close spatial proximity as used in HyPro-seq or HyPro-mass spectrometry methods.

References

1. Guo, J. U., V. Agarwal, et al. (2014). Genome Biol 15(7): 409. 2. Jeck, W. R., J. A. Sorrentino, et al. (2013). RNA 19(2): 141-157. 3. Memczak, S., M. Jens, et al. (2013). Nature 495(7441): 333-338. 4. Salzman, J., R. E. Chen, et al. (2013). PLoS Genet 9(9): e1003777. 5. Zhang, X. O., H. B. Wang, et al. (2014). Cell 159(1): 134-147. 6. Zhang, Y., X. O. Zhang, et al. (2013). Mol Cell 51(6): 792-806. 7. You X. et. al. (2015) Nat Neurosci. 2015 Apr;18(4):603-10 8. Hentze and Preiss (2013) EMBO J 3;32(7):923-5.

> Tel.: 915 515 403 e-mail: info@bionova.es

Contact Us

*bio*Nova